Ten Years of Not Even Wrong

03/10/2017 11:34

by Peter Woit

This blog was started a little bit over ten years ago, and I’ve been intending for a while to write something marking the occasion and commenting on what has changed over the past ten years. I’ve found this mostly a rather discouraging topic to think about and whatever I have to say about it is going to be pretty repetitive for anyone who regularly reads this blog, so I’ll keep this fairly short.

 

Re-reading some of the early postings I’m struck mainly by how little has changed in ten years. Back in March 2004 I was writing about a David Gross talk promoting string theory, about whether CMB measurements would give information about GUT scale physics, about how string cosmology seemed to be an empty subject, and about new twistor-based methods for computing gauge theory amplitudes. There’s been a lot of progress on the last topic since then, but little change for the others.

 

During a talk at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara, Nima Arkani-Hamed, a physicist at the Institute for Advanced Study in Princeton, N.J., paced to and fro in front of the blackboard, addressing a packed room about the future of supersymmetry. What if supersymmetry is not found at the LHC, he asked, before answering his own question: then we will make new supersymmetry models that put the superpartners just beyond the reach of the experiments. But wouldn’t that mean that we would be changing our story? That’s okay; theorists don’t need to be consistent—only their theories do.

 

This unshakable fidelity to supersymmetry is widely shared. Particle theorists do admit, however, that the idea of natural supersymmetry is already in trouble and is headed for the dustbin of history unless superpartners are discovered soon…

 

The authors go on to describe possible responses to this crisis. One is the multiverse, which they contrast to supersymmetry as not providing an answer to why the SM parameters are what they are, although this isn’t something that supersymmetry ever was able to do. Another is large extra dimensions as in Randall-Sundrum, but that’s also something the LHC is not finding, with few ever thinking it would. Finally there’s the “dimensional transmutation” idea about the Higgs, which I wrote about here last year. About this, the authors write:

 

If this approach is to keep the useful virtual particle effects while avoiding the disastrous ones—a role otherwise played by supersymmetry—we will have to abandon popular speculations about how the laws of physics may become unified at superhigh energies. It also makes the long-sought connection between quantum mechanics and general relativity even more mysterious. Yet the approach has other advantages. Such models can generate mass for dark matter particles. They also predict that dark matter interacts with ordinary matter via a force mediated by the Higgs boson. This dramatic prediction will be tested over the next few years both at the LHC and in underground dark matter detection experiments.

 

It’s great to see such a high-profile public discussion of the implications of the collapse of the paradigm long-dominant in some circles which sees SUSY extensions of the Standard Model as the way forward for the field. One place where I disagree with Lykken and Spiropulu is their claim that “It is not an exaggeration to say that most of the world’s particle physicists believe that supersymmetry must be true.” Actually I think that is an exaggeration, with a large group of theorists always skeptical about SUSY models. For some evidence of this, take a look at this document from 2000, which shows a majority skeptical about SUSY at the LHC.

 

By the way, I hear those on the right side of that bet haven’t yet gotten their cognac, with the bet renegotiated to wait for results from the next LHC run.

 

One big change over the past ten years is that the argument that string-theory based unification is a failed project is no longer a particularly controversial one, with most physicists now leaning to this conclusion. Last night even Sheldon of The Big Bang Theory acknowledged that this isn’t working out and he needs to find something else to work on (see here). Maybe even Sheldon’s real life model will soon reach this conclusion. Ten years ago the argument one often heard was that string theory was the winner in the marketplace of ideas, with skeptics just sore losers. These days, it’s string theorists who are more often complaining about the unfairness of this marketplace.

 

One development that is just starting to have a major impact is the failure of the LHC to find any evidence of SUSY, leading to increased skepticism about SUSY extensions of the standard model. This is a developing story, with results over the next couple years from the LHC likely to make this a textbook example of what scientists do in the face of experimental disconfirmation of their most cherished ideas.

 

The discovery of the Higgs has been a wonderful vindication of the ideas and techniques of high energy physics, both experimental and theoretical. As we learn more about the Higgs the lesson seems to be that this sector of the Standard Model behaves in the simplest way possible. This is a significant new piece of information about nature, although a frustrating one since it doesn’t provide a hint of how to improve the Standard Model.  On the whole though, I fear that thinking about changes over the last ten years mostly puts me in a not very good mood. Some of the depressing developments and trends of the last ten years are:

 

One reaction to string theory’s failures in the marketplace of ideas has been a Russian billionaire’s decision to try and manipulate that marketplace by injecting tens of millions of dollars into it on one side. The largest financial prize in science now is devoted to each year rewarding people for work on a failed project. This is corrupting the marketplace in a significant way.

 

Some of my earliest postings back in 2004 were about KKLT, the string landscape and the multiverse. At the time I was sure that if the landscape proposal being pushed by the Stanford group became widely accepted as an implication of string theory unification, that would be the end of it. Surely no sensible person would try and argue for an extremely complicated, inherently unpredictive theoretical framework. Boy, was I wrong. As I’ve gone on about far too often here, the current multiverse mania is a disastrous and shameful episode for fundamental theoretical physics, threatening its essential nature as a science.

 

Most physics departments have reacted to the failure of string theory by at least partly blaming this failure on the over-emphasis of mathematics, instead of the fact that this was just a wrong idea about physics. An interesting document I recently ran across is this one about the connections of particle physics with other disciplines [https://science.energy.gov/~/media/hep/hepap/pdf/201403/Kachru_HEPAP.pdf], written by my advisor Curtis Callan and Shamit Kachru. Mathematics is mentioned in a section discussing past successes in cross-fertilization with other fields, but it appears not at all in the rest of the document discussing opportunities for the future.

 

I’m quite surprised that I’ve continued to find topics worth blogging about ten years down the road, this is something I never expected when this started. Right now I’m hoping for something unexpected in coming years, that I’ll be writing about something different and much more interesting ten years from now!

 

Supersymmetry and the Crisis in Physics

 

The May issue of Scientific American has a very good cover story by Joe Lykken and Maria Spiropulu, entitled Supersymmetry and the Crisis in Physics (the article is now behind their subscriber paywall, but for those with access to Nature, it will soon be here).  Here are some excerpts:

 

It is not an exaggeration to say that most of the world’s particle physicists believe that supersymmetry must be true—the theory is that compelling. These physicists’ long-term hope has been that the LHC would finally discover these superpartners, providing hard evidence that supersymmetry is a real description of the universe

 

Indeed, results from the first run of the LHC have ruled out almost all the best-studied versions of supersymmetry. The negative results are beginning to produce if not a full-blown crisis in particle physics, then at least a widespread panic. The LHC will be starting its next run in early 2015, at the highest energies it was designed for, allowing researchers at the ATLAS and CMS experiments to uncover (or rule out) even more massive superpartners. If at the end of that run nothing new shows up, fundamental physics will face a crossroads: either abandon the work of a generation for want of evidence that na­­ture plays by our rules, or press on and hope that an even larger collider will someday, somewhere, find evidence that we were right all along

 

During a talk at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara, Nima Arkani-Hamed, a physicist at the Institute for Advanced Study in Princeton, N.J., paced to and fro in front of the blackboard, addressing a packed room about the future of supersymmetry. What if supersymmetry is not found at the LHC, he asked, before answering his own question: then we will make new supersymmetry models that put the superpartners just beyond the reach of the experiments. But wouldn’t that mean that we would be changing our story? That’s okay; theorists don’t need to be consistent—only their theories do.

 

This unshakable fidelity to supersymmetry is widely shared. Particle theorists do admit, however, that the idea of natural supersymmetry is already in trouble and is headed for the dustbin of history unless superpartners are discovered soon…

 

The authors go on to describe possible responses to this crisis. One is the multiverse, which they contrast to supersymmetry as not providing an answer to why the SM parameters are what they are, although this isn’t something that supersymmetry ever was able to do. Another is large extra dimensions as in Randall-Sundrum, but that’s also something the LHC is not finding, with few ever thinking it would. Finally there’s the “dimensional transmutation” idea about the Higgs, which I wrote about here last year. About this, the authors write:

 

If this approach is to keep the useful virtual particle effects while avoiding the disastrous ones—a role otherwise played by supersymmetry—we will have to abandon popular speculations about how the laws of physics may become unified at superhigh energies. It also makes the long-sought connection between quantum mechanics and general relativity even more mysterious. Yet the approach has other advantages. Such models can generate mass for dark matter particles. They also predict that dark matter interacts with ordinary matter via a force mediated by the Higgs boson. This dramatic prediction will be tested over the next few years both at the LHC and in underground dark matter detection experiments.

 

It’s great to see such a high-profile public discussion of the implications of the collapse of the paradigm long-dominant in some circles which sees SUSY extensions of the Standard Model as the way forward for the field. One place where I disagree with Lykken and Spiropulu is their claim that “It is not an exaggeration to say that most of the world’s particle physicists believe that supersymmetry must be true.” Actually I think that is an exaggeration, with a large group of theorists always skeptical about SUSY models. For some evidence of this, take a look at this document from 2000, which shows a majority skeptical about SUSY at the LHC.

 

By the way, I hear those on the right side of that bet haven’t yet gotten their cognac, with the bet renegotiated to wait for results from the next LHC run.

 


 [Note:  How very refreshing to read a real physical scientist (physicist/mathematician -- as distinct from a life scientist) refute some of the major physics theories being funded and operating over the last 10 years.  You don’t need to know physics to read his deep frustration and concern about the viability and accuracy of his own field -- and the complete lack of empirical evidence for these merely a priori and prevalent “theories”.  They just don’t match the real world;  very few physical scientists follow the last step of the traditional scientific method.  I remember my physics professor telling us that we didn’t really have to show up for lab because the theories were coherent with previous formulas without needing to prove them empirically!!   (And note that among all the projects this false physics science has led to, technology based on More’s Law and it’s fundamental reliance on “quantum physics” -- one of the dogmas of transhumanism/futurism -- is currently one of the most disastrous for the human race).  See his comments about the article out now in the new May issue of Scientific American, “A crisis in physics?  If supersymmetry doesn’t pan out, scientists need a new way to explain the universe” (subscription required).  Perhaps the "reluctance" of many in physics and technology is more related to them loosing all that money, prestige and power invested all those years rather than really "believing" in their "theories".  Just because someone wears a white coat doesn’t mean they know what they are talking about.  The article first appeared here.  -- DNI]